A Novel Synthesis of 3-O-Allyl-4, 5, 6-tri-O-benzyl-1-O(\boldsymbol{p}-methoxybenzyl)-D-myo-inositol

Zhi Zhou YUE, Yuan Chao LI*
Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai 201203

Abstract

Highly efficient synthesis of the entitled compound was achieved from a readily available myo-inositol derivative. The key step involved a desymmetrization with (+)-camphor dimethyl ketal to give two diastereomers. The two diastereomers could be used to synthesize the same compound by changing the orders to introduce the protective groups.

Keyword: Inositol, (+)-camphor dimethyl ketal, desymmetrization.

Inositol phospholipid metabolism was involved in a wide variety of cellular processes. Investigation of these processes demanded a large number of various substrates, substrates analogues and inhibitors of enzymes ${ }^{1}$.

The 2-hydroxy of the myo-inositol ring was essential in the PI-PLC catalyzing hydrolysis of phosphatidylinositol. Phosphatidylinositol analogues lacking the freely axial 2-hydroxy were not hydrolyzed by several PI-PLCs ${ }^{2}$. They might be enormous leading compounds as PI-PLC inhibitors ${ }^{3}$.

The chemical modulation of the phospholipids depending on phosphatidylinositol 3-kinase (PI 3-K) signal cascade might offer a basis for the selective control of cancer cell growth while minimizing effects on normal cells ${ }^{4}$. In pursuit of this particular strategy to develop novel anticancer drug, it was needed to synthesize a number of phosphatidylinositol analogues embodying modification to the 3-position of the myo-inositol ring as PI 3-K inhibitor's candidates ${ }^{5}$. Besides, it was necessary to modify the 2-hydroxy to prevent the degradation occurred through PI-PLC ${ }^{6}$.

This needed to differentiate the three hydroxyes at 1,2 and 3 positions of the inositol ring and distinguish them from the other three hydroxyes at 4,5 and 6 positions in order to synthesize the compounds mentioned above. Therefore, it was very valuable to synthesize the inositol intermediates with the common structure of $\mathbf{1}$ for subsequently selective modification. We selected 3-O-allyl-4, 5, 6-tri-O-benzyl-1-O-(p-methoxyben-zyl)-D-myo- inositol 2 as our aimed compound to synthesize.

The published method for the preparation of 2 is chemoenzymatic method via cyclohexylidene ketal^{7}. We now described a novel procedure to prepare compound 2 in high yield, which avoided the arduous procedure (Scheme 1).

[^0]

1

2

Scheme 1 The preparation of 2

Reagents and conditions: (a) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}(85 \%)$; (b) $\mathrm{HBr}(48 \%), \mathrm{CH}_{3} \mathrm{OH}$, r.t., 36 $\mathrm{h}(95 \%)$; (c) (+)-camphor dimethyl ketal, $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $100 \mathrm{~min}(75 \% ; 35$ for 6 and 40% for 7); (d) $\mathrm{PMBCl}, \mathrm{NaH}$, DMF, r.t., $24 \mathrm{~h}\left(90 \%\right.$); (e) $\mathrm{AcCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(2: 1)$, r.t., 5 $\mathrm{h}(79 \%)$; (f) $n-\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 6 h ; AllylBr , CsF , DMF, r.t., $24 \mathrm{~h}(90 \%$); (g) AllylBr, NaH , DMF, r.t., $24 \mathrm{~h}(90 \%)$; (h) $\mathrm{AcCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(2: 1)$, r.t., $5 \mathrm{~h}(79 \%)$; (i) $n-\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, $16 \mathrm{~h}: \mathrm{PMBCl}, \mathrm{CsF}, \mathrm{DMF}$, r.t., 24 h (90\%)

The common starting material $\mathbf{3}$ could be prepared easily from myo-inositol in large scale ${ }^{8-10}$. $\mathbf{3}$ could react with titanium(IV)chloride to give $\mathbf{4 a}$ and $\mathbf{4 b}$ as a mixture ${ }^{10}$. We found the routine could be used in large scale ${ }^{11}$. Hydrolysis of $\mathbf{4 a}$ and $\mathbf{4 b}$ with hydrochloric acid and methanol under reflux for long time, the product 5 was very complicated and in low yield $(38 \%)^{10}$. We used hydrobromic acid instead of hydrochloric acid at room temperature to give 5 in high yield (95%) with large scale ${ }^{11}$.

Then compound 5 was simultaneously protected and resolved with (+)-camphor
dimethyl ketal ${ }^{12}$ by p-toluenesulfonic acid catalyzing exchange via cyclic ketal ${ }^{13}$. The camphor fragment served as not only a protective group but also a chiral auxiliary. This provided a convenient access to desymmetrize compound 5 to give the ketals $\mathbf{6}$ and 7 which could be separated by flash chromatography on the silica gel in good overall yield $\left[\mathrm{R}_{\mathrm{f}}=0.25 \text { (6) and } 0.42 \text { (7), } n \text {-hexane/chloroform (2:3) }\right]^{14}$. Careful chromatographic and spectral analysis revealed that $\mathbf{6}$ and 7 were single stereoisomer, respectively ${ }^{15}$.

The configuration of $\mathbf{6}$ and 7 were assigned via chemical correlation as following: 6 and 7 were transformed into the corresponding tetrabenzyl etheric camphor ketal respectively, then cleaved with 80% acetic acid to give 1,4,5,6-tetra-O-benzyl-D-myoinositol and 3,4,5,6-tetra-O-benzyl-D-myo-inositol, respectively. Comparing their rotation, melt points and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ with literature confirmed the integrity of $\mathbf{6}$ and $\mathbf{7}^{16}$.

The orientations (exo/endo geometry relative to O-1 of the myo-inositol moiety) of the $(+)$-camphor residues in $\mathbf{6}$ and 7 were determined by Rosey ${ }^{1} \mathrm{H}$-NMR spectroscopy of the corresponding tetrabenzyl etheric camphor ketal. The correlations between the signal from $\mathrm{Me}-10$ in the camphor moiety and the signal for hydrogenes of the myo-inositol ring are definitive to decide the orientations. No positive correlation between the signals $\mathrm{Me}-10$ and $\mathrm{H}-2$ was observed in the both spectrum, although the existence of the correlation is essential to determine that the orientation of 6 is 1D-2-O-endo-3-O-exo and the orientation of 7 is 1D-1-O-endo-2-O-exo. On the contrary, it was very obvious that the signal Me-10 was correlated with the signal $\mathrm{H}-4$ in the derivative of 6 . This indicated that the orientation of $\mathbf{6}$ was 1D-2-O-exo-3-O-endo. Similarly, obvious correlation was observed between the signal Me-10 and the signal H-6 of the derivative of 7. This testified that the orientation of 7 was 1D-1-O-exo-2-O-endo. So the orientation of $\mathbf{6}$ was assigned as 1D-2-O-exo-3-O-endo and the orientation of 7 was assigned as 1D-1-O-exo-2-O-endo accordingly ${ }^{13,17,18}$.

The two (+)-camphor ketal diastereomers 6 and 7 could be used to synthesize the same compound 2 by changing the order to introduce the protective p-methoxybenzyl group and allyl group (Scheme 1). Treating 6 with sodium hydride and p-methoxybenzyl chloride gave ether 8. Subsequent cleavage of the camphor ketal of $\mathbf{8}$ afforded the 2, 3-diol 9. Then chemoselective D-3-O-allylation of $\mathbf{9}$ was affected via stannane acetal generated in situ with azeotropic removal of water, followed by allylation in the presence of cesium fluoride to afford the aimed compound 2. Due to the steric hindrance at the axial 2-hydroxy, the allylation proceeded with extremely high regioselectivity, exclusively at 3-hydroxy ${ }^{7}$.

Another diastereomer 7 was first allylated on the D-3-hydroxy to give allylic ether 10, followed by cleavage of the camphor ketal. The resulting $\mathbf{1 1}$ was protected selectively at 1-hydroxy with the aid of cesium fluoride via its cyclic dibutylstannylene derivative to give the desired $\mathbf{2}$ according to the method as described above.

In conclusion, we developed a novel and practical access to a versatile precursor 2 from which many chiral phosphatidyl-D-myo-inositols, D-myo-inositol polyphosphates and their derivatives and analogs could be synthesized. The effect and the yield of the desymmetrization were enhanced via changing the order to introduce the protective groups.

References and Notes

1. B. V. L. Potter, D. Lampe, Angew. Chem. Int. Ed., 1995, 34(18), 1933.
2. K. S. Bruzik, M. D. Tsai, Bioorg. Med. Chem., 1994, 2(1), 49.
3. L. O. Essen, O. Perisic, R. Cheung, et al., Nature, 1996, 380(6575), 595.
4. C. Berrie, Expert. Opin. Investig. Drugs, 2001, 10(6), 1085.
5. H. Y. Sun, G. B. Reddy, C. George, et al., Tetrahedron Lett., 2002, 43(15), 2835.
6. R. J. Hondal, Z. Zhao, A. V. Kravchuk, et al., Biochemistry, 1998, 37(13), 4568.
7. D. S. Wang, C. S. Chen, J. Org. Chem., 1996, 61(17), 5905.
8. S. J. Angyal, Carbohydr. Res., 2000, 325, 313.
9. D. C. Billington, R. Baker, J. J. Kulagowski, et al., J. Chem. Soc., Perkin Trans.1, 1989, (8), 1423.
10. H. Gilbert, A. B. Holmes, M. J. Pestchanker, et al., Carbohydr. Res., 1992, 234, 117.
11. Typical procedure: To a solution of acetal $3(18.89 \mathrm{~g}, 34.2 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350$ $\mathrm{mL})$ at $-78^{\circ} \mathrm{C}$ under Ar was added fresh redistilled $\mathrm{TiCl}_{4}(7.0 \mathrm{~mL}, 63.8 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and $\mathrm{H}_{2} \mathrm{O}(68 \mathrm{~mL})$ was added. The mixture was allowed to warm to room temperature and poured into $2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(1 \mathrm{~L})$. Extractive workup with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentration gave crude 4 as yellow oil $(19.8 \mathrm{~g})$. Then $48 \% \mathrm{HBr}(100 \mathrm{~mL})$ and methanol (250 mL) were added. The solution was stirred at room temperature for 40 hour. TLC (n-hexane $/ \mathrm{EtOAc}=3 / 2, \mathrm{R}_{\mathrm{f}}=0.39$) show the starting material had disappeared. The solution was neutralised with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$, filtered and concentrated. The residue was extracted with EtOAc and concentrated. Recrystallization with ethanol gave 5 as white solid $(10.31 \mathrm{~g})$. The mother liquid was concentrated. Flash-column chromatography (EtOAc, $\mathrm{R}_{\mathrm{f}}=0.45$) of the residue gave 52.50 g . The yield is 83.1%.
12. K. B. Wiberg, W. C. Cunningham, J. Org. Chem., 1990, 55(2), 679.
13. K. S. Bruzik, G. M. Salamonczyk, Carbohydr. Res., 1989, 195, 67.
14. Typical procedure: To a solution of the triol $5(19.4 \mathrm{~g}, 43.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mathrm{~mL})$ was added the $(+)$-camphor dimethyl ketal $(24 \mathrm{~mL}, 25 \mathrm{~g}, 126 \mathrm{mmol})$ and $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(284 \mathrm{mg}, 1.7$ mmol) under Ar. The solution was refluxed for 1.5 hour under Ar, then cooled to room temperature. The reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ and stirred for 0.5 hour. The solvent was removed in vacuo. Flash chromatography eluting with $\mathrm{CHCl}_{3} /$ n-hexane (1:1) gave $6(8.74 \mathrm{~g}, 34.7 \%)$ and $7(10.1 \mathrm{~g}, 39.8 \%)$ as colorless oil.
15. Spectral data for 6: $[\alpha]_{\mathrm{D}}^{20}+15.8\left(\mathrm{c} 3.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta \mathrm{ppm} 7.26-7.38$ $(\mathrm{m}, 15 \mathrm{H}), 4.61-4.89(\mathrm{~m}, 6 \mathrm{H}), 4.22-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}$, $9.2 \mathrm{~Hz}), 3.83(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}), 3.56(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, 9.4 \mathrm{~Hz}), 2.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz})$, 2.04-2.08 (m, 1H), 1.90-1.95 (m, 1H), 1.73-1.80 (m, 2H), 1.42-1.48 (m, 2H), 1.18-1.26 (m, $1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3},, 125 \mathrm{MHz}\right): \delta \mathrm{ppm}$ 138.7, $138.5,138.0$ (aromatic C), 128.4, 128.3, 127.9, 127.8, 127.5, 127.4 (aromatic CH), 117.5 (C2 of camphor ketal), $82.3,82.2,76.7,76.1,74.4,69.2(\mathrm{CH}$ inositol $), 74.0,73.9,73.6\left(\mathrm{PhCH}_{2}\right)$, $51.5,47.9(\mathrm{C}-1,7), 45.1(\mathrm{CH}-4), 43.9\left(\mathrm{CH}_{2}-3\right), 29.9,26.9\left(\mathrm{CH}_{2}-5,6\right), 20.5,20.2,\left(\mathrm{CH}_{3}-10,9\right)$, $9.9\left(\mathrm{CH}_{3}-8\right)$. HREIMS calcd. for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{6}(\mathrm{M}+) 584.3138$; found 584.3134 .

Spectral data for 7: $[\alpha]_{\mathrm{D}}^{20}-15.4$ (c $\left.3.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta \mathrm{ppm}$ 7.26-7.40 (m, 15H), 4.62-4.91 (m, 6H), 4.37 (dd, J=7.3Hz, 7.2 Hz, 1H), $4.08(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.94(\mathrm{dd}, \mathrm{J}=9.1 \mathrm{~Hz}, 9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=9.2 \mathrm{~Hz}, 9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}$, $1 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H})$, $0.87(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta \mathrm{ppm} 138.8,138.5,138.0$ (aromatic C), $128.4,128.3,127.9,127.8,127.5,127.4$ (aromatic $C H$), 117.7 (C 2 of camphor ketal), 82.4 , 82.2, 81.1, 77.9, 72.8, 69.1 (CH inositol), 74.0, 73.4, $73.3\left(\mathrm{PhCH}_{2}\right), 51.3,48.1(\mathrm{C}-1,7), 45.0$ $(\mathrm{CH}-4), 43.9\left(\mathrm{CH}_{2}-3\right), 29.8,26.9\left(\mathrm{CH}_{2}-5,6\right), 20.4,20.2\left(\mathrm{CH}_{3}-10,9\right), 10.6\left(\mathrm{CH}_{3}-8\right)$. HREIMS calcd. for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 584.3138$; found 584.3138 .
16. 1,4,5,6-Tetra-O-benzyl-D-myo-inositol: $[\alpha]_{\mathrm{D}}^{20}+25.3$ (c $0.5, \mathrm{CHCl}_{3}$), mp $140-1^{\circ} \mathrm{C}$ [reference 13: $\left.[\alpha]_{\mathrm{D}}^{20}+24\left(\mathrm{c} 2.7, \mathrm{CHCl}_{3}\right), \mathrm{mp} 141-3^{\circ} \mathrm{C}\right] ; 3,4,5,6$-tetra-O-benzyl-D-myo-inositol: $[\alpha]_{\mathrm{D}}^{20}-26$ (c $0.2, \mathrm{CHCl}_{3}$), mp 142-3 ${ }^{\circ} \mathrm{C}$ [reference 13: $\left.[\alpha]_{\mathrm{D}}^{20}-25\left(\mathrm{c} 2.7, \mathrm{CHCl}_{3}\right), \mathrm{mp} 140-2^{\circ} \mathrm{C}\right]$.
17. K. M. Pictrusiewicz, G. M. Salamonczyk, K. S. Bruzik, Tetrohedron, 1992, $48(26), 5523$.
18. K. S. Bruzik, M. D. Tsai, J. Am. Chem. Soc., 1992, 114(16), 6361.

Received 23 December, 2003

[^0]: * E-mail: ycli@mail.shcnc.ac.cn

